
Automated Generation of Optimal
Controllers through Model Checking Techniques

Giuseppe Della Penna1, Daniele Magazzeni1, Alberto Tofani1, Benedetto Intrigila2

Igor Melatti3 and Enrico Tronci3

1Dipartimento di Informatica, Università di L’Aquila, Italy
{dellapenna,magazzeni,tofani}@di.univaq.it

2Dipartimento di Matematica Pura ed Applicata, Università di Roma “ Tor Vergata”, Italy
intrigil@mat.uniroma2.it

3Dipartimento di Informatica, Università di Roma “La Sapienza”, Italy
{melatti,tronci}@di.uniroma1.it

Abstract. We present a methodology for the synthesis of controllers, which ex-
ploits (explicit) model checking techniques. That is, we can cope with the system-
atic exploration of a very large state space. This methodology can be applied to
systems where other approaches fail. In particular, we can consider systems with
an highly non-linear dynamics and lacking a uniform mathematical description
(model). We can also consider situations where the required control action can-
not be specified as a local action, and rather a kind of planning is required. Our
methodology individuates first a raw optimal controller, then extends it to obtain
a more robust one. A case study is presented which considers the well known
truck-trailer obstacle avoidance parking problem, in a parking lot with obstacles
on it. The complex non-linear dynamics of the truck-trailer system, within the
presence of obstacles, makes the parking problem extremely hard. We show how,
by our methodology, we can obtain optimal controllers with different degrees of
robustness.

Keywords. Controller synthesis, controller optimization, model checking,
nonlinear systems.

1 Introduction

Control systems (or, shortly, controllers) are small hardware/software components that
control the behavior of larger systems, the plants. A controller continuously analyzes
the plant state (looking at its state variables) and possibly adjusts some of its parame-
ters (called control variables) to keep the system in a condition called setpoint, which
usually represents the normal or correct behavior of the system.

In the last years, the use of sophisticated controllers has become very common in
robotics, critical systems and, in general, in the hardware/software embedded systems
contained in a growing number of everyday products and appliances.

However, since the primary aim of a controller is to ensure the correct behavior
of the controlled plant, we have to guarantee the efficiency and the robustness of con-
trollers. By efficiency, we mean the capability of the controller to bring the system to

108 G. Della Penna et al.

the set point in the shortest possible time (also called time optimality). By robustness,
we mean the capability of the controller to perform well when the state variables vary
outside the design range.

Therefore, the verification of these properties is a crucial task that is being addressed
using different formal methodologies (e.g., model checking and theorem proving) de-
veloped in different research communities (e.g., automata theory and artificial intelli-
gence [1]). In particular, much work is being done to provide a methodology for the
automatic (or semi–automatic) synthesis of correct controllers directly from the plant
specifications.

However, efficiency and robustness can hardly be simultaneously fulfilled, espe-
cially in critical systems, where the system dynamics is difficult to understand and to
control.

Therefore a possible approach for approximate a correct solution, can be to start by
synthesizing a very efficient or even optimal controller and – as a second step – to make
it robust. (Observe, however, that in case safety is involved, a better approach could be
to choose the best controller in the class of the safe ones [2]).

To this aim, in this chapter we describe an automatic methodology composed by:

1. a procedure for the synthesis of an optimal controller;
2. a procedure for the transformation of the optimal controller into a robust one.

Our methodology exploits explicit model checking in an innovative way w.r.t the
approaches adopted so far, especially in the AI planning area. In particular, the first
procedure – looking for an optimal solution – actually can also be considered as a plan-
ner. Indeed, this procedure does not simply individuate a good local move, but searches
for the best possible sequence of actions to bring the plant to the setpoint. Therefore, it
can be also used as a planner, though we will not pursue this point in this chapter.

2 Controller Synthesis Techniques

In this section we recall some basic notions about controller synthesis and describe the
main results presented in this field by the recent research.

2.1 Controller Synthesis

There are a number of well-established techniques for the synthesis of controller. For
short, we mention only three of them:

1. PID controllers;
2. fuzzy controllers;
3. dynamic programming techniques.

As it well-known [3], PID-based techniques are very effective for linear systems, while
they badly perform w.r.t. non-linear ones. On the contrary our technique is able to cope
with such systems, as shown in the case study.

Fuzzy control is well known as a powerful technique for designing and realizing
control systems, especially suitable when a mathematical model is lacking or is too

Automated Generation of Optimal Controllers 109

complex to allow an analytical treatment [4] [5]. However fuzzy rules correspond to
local actions, so that, in general, they do not result in an optimal controller. Moreover
there are situations where local actions are not viable at all, and rather a kind of planning
is required. For an example of such a situation see the case study.

Dynamic programming techniques are very suitable for the generation of optimal
controllers [6] [7]. Although our methodology has a dynamic programming flavor, it
can cope with (and it is especially suitable for) very rough plant descriptions, whose
mathematical definition cannot be adapted to the dynamic programming preconditions,
when the cost function cannot be decomposed or the system dynamics function cannot
be inverted. Again, see the case study, where a backward decomposition of the cost
function (in this case, the length of the path) is hard to perform, due to the complexity
of the system dynamics function and to the presence of obstacles. Indeed, we performed
a direct systematic analysis of the trajectories, using model checking techniques to sup-
port the required computational effort.

3 Optimal Controller Generation through Model Checking

Our objective is to build an optimal controller for a system (or plant) S which, at every
state, has a limited number of allowed actions. Moreover, we suppose that S starts at
a given interesting initial state s0, and that the final goal is to bring S in a goal state
(however, we can easily generalize to the case with n initial states). We recall that our
optimality criterion is essentially the time optimality: that is, we want to bring S in a
goal state in the smallest possible number of steps.

Thus, our controller has to be able to decide, for every state of S which is reach-
able from s0, which is the action that brings to the nearest (w.r.t. the number of steps)
goal state. The optimality of the action chosen implies the optimality of the generated
controller. Note that forcing the controller to consider all the states reachable from s0,
instead of controlling only the states in the unique optimal path from s0 to a goal state,
allows us to handle the cases in which a bad move is made as a consequence of a given
action.

In order to build such a controller, we consider the transition graph G of S, where
the nodes are the reachable states and a transition between two nodes models an allowed
action between the corresponding states. In this setting, the problem of designing the
optimal controller reduces to finding the minimum path in G between each state and
the nearest goal state.

Unfortunately a transition graph for complex, real-world systems could be often
huge, due to the well-known state explosion problem. Thus it is likely that G would not
fit into the available RAM memory, and then the minimum path finding process could
be highly time-consuming.

However, Model Checking techniques [8] [9] [10] developed in the last decades have
shown to be able to deal with very huge state spaces. Thus, our idea is to reuse such
model checking algorithms, reshaping them to be a controller generator. Note that in
this chapter we focus on protocol-based hybrid systems, so we use model checking tech-
niques based on an on-the-fly explicit enumeration of the system under analysis, since
for such kind of systems these algorithms often outperform the symbolic ones [11].

110 G. Della Penna et al.

More in detail, in our technique we have two phases, which we describe in the
following.

3.1 Optimal Raw Controller Synthesis Phase

In the first phase, an explicit model checking algorithm is used, which performs a Depth
First (DF) visit of all the reachable states of S, starting from s0. As usual, a hash table
HT is used in order to store already visited states. Moreover, the stack holds, together
with states, also the next action to be explored.

However, the DF visit is enriched in order to generate the controller C. To this aim,
HT also stores, for each visited state, a flag toGoal, initially set to 0. When a goal
state g is reached, then the states in the current path from s0 to g (that is to say, the
states currently on the stack) will have this flag set to 1, as soon as the visit backtracks
to them. This is to signify that such states indeed reach a goal, and may be put in C
– together with the action taken and the number of steps they need to reach the goal
itself. In this way, when a state s with the toGoal flag set to 1 is reached, then we can
analogously set the toGoal flag on all the states currently on the stack, and put them
on C.

However, this scheme may fail in the following case. Suppose that a cycle s1r1 . . .
rhs2t1 . . . tks1 is found, were s1 and s2 are on the stack. When analyzing tk, the
toGoal flag of s1 is not set to 1, since we have not backtracked from s2 yet. However,
the visit is truncated, since s1 is already visited, thus tk will not be inserted in C (unless
it was already present, or it reaches a goal through another path which does not intersect
the stack).

To avoid this, a predecessor table PT is maintained for each state which is visited
again while it is on the stack. We have that PT stores all the paths leading from a state
on the stack and another state previously on the stack. Thus, in the situation described
above, the path r1 . . . rhs2t1 . . . tk is added to the predecessor table of s1. Thus, when
the DF visit of s1 is finished, all the states in its predecessor table are added on C by
using a backward visit, provided that s1 indeed reaches a goal.

Finally, in order to preserve optimality, each insertion on C is effectively performed
only if the number of steps to be inserted is less than the already stored one.

3.2 Controller Strengthening Phase

The second phase of our approach performs a strengthening of the controller C gener-
ated by the first phase. In fact, C only contains an optimal plan that can be used to drive
S from s0 to the goal. That is, C does not take into account any state outside the optimal
plan. The final controller should be aware of a larger set of states: indeed, the dynamics
of S can be very complex, and a particular setting of the control variables may not al-
ways drive S to the expected state. That is, all the state variables usually have a specific
tolerance, and the reactions to controls are subject to these tolerances. For this reason,
we refer to the controller C output by the first phase as a raw controller.

Therefore, to ensure the robustness of the controller, in the second strengthening
phase we explore a larger number of states obtained by randomly perturbing the raw

Automated Generation of Optimal Controllers 111

controller states. That is, for each state s in the raw controller table C, we apply a set
of small random changes, bounded by the state variables tolerances, and obtain a new
state s′. Then, from each new state s′, we start a breadth first visit of the state space of
S stopping as soon as we reach a state s′′ that is already in C. The path from s′ to s′′ is
stored in C and the process is restarted.

After some iterations of this process, we have that C is now able to drive S from any
reasonable system state to the nearest state of the optimal controller and, from there,
reach a goal. That is, C is now our final optimal controller.

4 The Controller Generation Process

The CGMurϕ tool is an extended version of the CMurϕ [12] [13] model checker. It
is based on an explicit enumeration of the state space, originally developed to verify
protocol-like systems. We choose CMurϕ as a base to develop our controller generator
since it already implements the most common state space compression techniques, such
as bit compression [14] and hash compaction [15] [16], useful to decrease the memory
requirements of the controller generation process when dealing with large-dimensional
control systems. In particular, when bit compression is enabled, CMurϕ saves memory
by using every bit of the state descriptor, the memory structure maintaining the state
variables, instead of aligning the state variables on byte boundaries (this saves on av-
erage 300% of memory). When using hash compaction, compressed values, also called
state signatures, are used to remember visited states instead of full state descriptors.
The compression ratio can be set to obtain an arbitrary state site (CMurϕ default is 40
bits), but is lossy, so there is a certain probability that some states will have the same
signature after compression.

Moreover, the CMurϕ code is very easy to modify: indeed, in order to generate
controllers for complex and hybrid systems we added to CGMurϕ some important ex-
tensions, i.e., finite precision real numbers handling (to model systems with continuous
variables) and external linking to C/C++ functions (to easily model the most complex
aspects of the plant, or even interface the model with a complete plant simulator).

The behavioral part of the plant is modeled in CGMurϕ through a collection of
guarded transition rules, whereas the goal construct is used to define the goal proper-
ties, that is “normal” or “safe” states of the plant, i.e. the states that the controller should
to bring (or maintain) the plant to.

In the following sections we describe the controller generation algorithm that is the
core of CGMurϕ. In particular, first we show the data structures used, then we illustrate
the procedure for the synthesis and strengthening of the controller table.

4.1 Data Structures

The controller generation algorithm of CGMurϕ uses the following data structures:

– the stack ST contains pairs (s, r), where s is a state and r is the index of last transi-
tion (i.e., CMurϕ rule) fired from s.

112 G. Della Penna et al.

DFS(state p) { //p is the start state
//initialization (start state)
if (isGoal(p)) return;
stack_push(ST,(p,first_enabled_rule(p)));
hashtable_store(HT,p);
HT[p].toGoal = false; HT[p].inPT = false;
//main DFS loop
while (!stack_empty()) {
(p,r) = stack_top(ST);
if (r is not null) {
s = apply_rule(p,r);
stack_top(ST) = (p,next_enabled_rule(p,r));
if (Insert(s,p,r)) UpdatePaths(s,p,r)

} else { //r is null, no more rules for p
UpdatePathsPt(p); stack_pop(ST);

}} //while
UpdatePathsFl();

}

Fig. 1 Extended CGMurϕ depth first search.

– each slot of the hash table HT contains a (visited) state and two special flags: the
toGoal flag indicates that a goal can be reached from this state in one or more steps
(transitions), whereas the inPT flag is true if the state has been saved in the predeces-
sors table.

– the predecessors table PT is an hash table storing (s, l) pairs where s is a state on
the DFS branch being currently explored, and l is the list of paths leading from an
initial state to s. Each step of the path contains a state and the action that leads to that
state from the previous step.

– the final transitions list FL stores paths to visited states (similarly to the predeces-
sors table) that are discovered when such states are outside the current DFS branch.
These paths are merged with the ones in the predecessors table to compute the short-
est path to the corresponding states at the end of the state space exploration.

– the controller table CTRL contains, for each reachable system state s that leads (in
one or more steps) to a goal, a pair < r, c > indicating that the shortest path leading
from s to a goal state has c steps, where the first step is the action given by rule r.

4.2 Optimal Raw Controller Synthesis Algorithm

The optimal raw controller synthesis algorithm, as shown in Fig. 1, consists of an ex-
tended depth-first visit of the plant state space. As in a standard DF visit, each state s
to be visited is generated by applying a particular rule r to the current state p. In Fig. 1,
functionfirst enabled rule(p) returns the first rule that can be applied on a par-
ticular state p, whereas function next enabled rule(p,r) returns the next rule
that can be applied on p after rule r. Both functions return null if such transition does
not exist.

In addition, during the DF visit our algorithm updates the controller table when a
goal is encountered (in function Insert), when an already visited state is encountered
(in function UpdatePaths), when all the children of a state have been explored (in
function UpdatePathsPt()) and when the state space exploration ends (in function
UpdatePathsFl).

The function Insert, given a new state s reached from state p by firing rule r,
checks if s is a goal state and, if so, it creates an entry in the controller table for the state

Automated Generation of Optimal Controllers 113

UpdatePaths(state s, state p, rule r) {
if (HT[s].toGoal==true) {
if (p is not in CTRL or CTRL[p].count >= CTRL[s].count+1) {
HT[p].toGoal = true; CTRL[p].rule = r;
CTRL[p].count = CTRL[s].count+1;

}} else if (s is on the stack ST) {
//s may reach a goal
foreach ((p’,r’) on the stack ST) {
save (p’,r’) in PT[s]; HT[p’].inPT = true;

}} else if (HT[s].inPT == true) {
//s was on the stack
insert (p,r,s) in FL;

}}

Fig. 2 Function UpdatePaths.

p using the rule r. When s is not a goal, Insert behaves as in a standard DFS: if s is
non visited the function pushes it on the stack and stores it in the hash table; otherwise,
the function simply returns true to indicate that s is a visited state.

Figure 2 shows the details of function UpdatePaths that is called when the DFS
reaches an already visited state s by applying a rule r on a state p. In this case, we may
have to update the controller table CTRL:

– if s reaches a goal, then also p does. Thus, if p is not in the controller table, we
insert it together with r. Otherwise, if p is already present in the controller table, we
update its rule with r if the goal path through s is shorter than the path previously
set for p in the controller table. This update ensures the optimality of generated
controller.

– if s is in the stack, then it may still reach a goal. Thus we remember all the states
on the path leading to s that is represented by the current stack content by saving
them in the predecessors table PT.

– finally, if s is in the predecessors table, but not on the stack, we save it in the final
list FL, together with its parent p and the transition r. This information will be later
used to resolve cyclic paths in the predecessor table.

The function UpdatePathsPt is called when a state s has been completely ex-
panded by the DFS algorithm. If s reached a goal, then for each state p in the predeces-
sors table of s, we add to CTRL a rule that allows p to reach the goal through s.

Finally, the function UpdatePathsFl, called at the end of the visit, completes
the controller table by adding rules for states in the final list FL. This is similar to what
is done by UpdatePathsPt, but is applied at the end of the state space exploration
and on a separate set of states. Such states belong to intersecting paths of the transition
graph, so their shortest path to the goal can be computed only when all the goal paths
have been generated.

4.3 Controller Strengthening Algorithm

The controller strengthening is implemented by the exploreNeighborhood func-
tion shown in Fig. 3. For each state p in the controller table, the function generates
MAX VARS PER STATE variations by applying small changes to the state variables.
Then, the algorithm checks if each of the new states is in turn in the controller table. If

114 G. Della Penna et al.

ExploreNeighborhood() {
repeat {
complete = true;
foreach (p in CTRL)
for vars = 1 to MAX_VARS_PER_STATE {
s = add_random_variations_to(p);
if (s is not in CTRL) {
complete = false;
//get a path from s to a state in CTRL
path = BFS_lookup(s,CTRL);
//store new path in CTRL
foreach ((s’, r’) in path)
CTRL[s’].rule = r’;

}}} until (complete)
}

Fig. 3 Function exploreNeighborhood.

any generated state s is not yet handled by the controller, the function performs a BFS
search from s until it reaches a controlled state, and inserts the path from s to such state
in CTRL. The process is repeated until all the generated variations are found in CTRL.
At this point, CTRL knows how to drive the plant on the optimal plan and how to bring
the plant on the nearest optimal plan state from a reasonable number of states outside
the optimal plan.

5 Truck-and-Trailer Obstacles Avoiding Controller

To show the effectiveness of our approach, we show how it can be applied to the truck
and trailer with obstacles avoidance problem.

The goal of a truck and trailer controller is to back a truck with a trailer up to a
parking place starting from any initial position in the parking lot. This is a non trivial
problem due to the dynamics of the truck-trailer pair (see the mathematical model in
Sect. 5.1).

Moreover, we added to the parking lot some obstacles, which have to be avoided by
the truck while maneuvering to reach the parking place. In this setting, also finding a
suitable maneuver to reach the goal for any starting position may be an hard task. On
the other hand, finding an optimal maneuver is a very complex problem, that cannot
be modeled and resolved using common mathematical or programming strategies, e.g.,
using a dynamic programming approach.

Indeed, in the truck-and-trailer-with-obstacles problem, a backward decomposition
of the cost function (e.g., the length of the path) is hard to perform, due to the complexity
of the system dynamics function and to the presence of obstacles, whereas a forward
decomposition does not satisfy the optimality principle, since the presence of obstacles
may make an optimal local maneuver not optimal w.r.t. the final goal. This also makes
fuzzy controllers not suitable for this problem, since fuzzy rules have a local character.

In the following sections we give details of the truck and trailer model and show
the results obtained by applying the controller generation process described in Sect. 3
to perform a systematic analysis of the truck trajectories, discretized as a sequence of
forward steps.

Automated Generation of Optimal Controllers 115

θs

θc

u

(x, y)

x

y

··
·

· ·
· ·
·

··

Fig. 4 Truck and trailer system description.

5.1 Model Description

Our model of the truck and trailer is based on the set of equations presented in [17]. The
system has four state variables, that is the coordinates of the center rear of the trailer
(x, y ∈ [0, 50]), the angle of the trailer w.r.t. the x-axis (θS ∈ [−90◦, 270◦]) and the
angle of the cab w.r.t the x-axis (θC ∈ [−90◦, 270◦]). We assume that the truck moves
backward with constant speed of 2m/s, so the only control variable is the steering angle
u ∈ [−70◦, 70◦]. Figure 4 shows a schematic view of the truck and trailer system with
its state and control variable. Moreover we single out 10 points in the truck and trailer
border (displayed in the Fig. 4 by bold points) representative of the truck and trailer
position.

If the values of the state variables at time t are x[t], y[t], θS [t] and θC [t], and the
steering angle is u, then the new values of state variables at time t + 1 are determined
by following equations:

x[t+ 1] = x[t] −B ∗ cos(θS [t]) (1)

y[t+ 1] = y[t] −B ∗ sin(θS [t]) (2)

θS [t+ 1] = θS [t] − arcsin
(
A ∗ sin(θC [t] − θS [t])

LS

)
(3)

θC [t+ 1] = θC [t] + arcsin
(
r ∗ sin(u)
LS + LC

)
(4)

116 G. Della Penna et al.

whereA = r ∗ cos(u), B = A ∗ cos(θC [t]− θS[t]), r = 1 is the truck movement length
per time step, LS = 4 and LC = 2 are the length of the trailer and cab, respectively (all
the measures are in meters).

After computing (3) and (4), the new value of θC is adjusted to respect the jackknife
constraint: |θS − θC | ≤ 90◦.

Note that this model does not consider the obstacles: indeed, embedding the obstacle
avoidance in the mathematical description of the truck and trailer dynamics would result
in a untractable set of equations. This feature will be added directly in the CGMurϕ
model described below.

5.2 The CGMurϕ Model

In the CGMurϕmodel we use real values to represent the state variables x and y, whilst
for the angle values (i.e., θS , θC and u) it is sufficient, w.r.t. the system dimensions, to
use integer values. Moreover, we define some tolerance constants to set up a range of
admissible final positions and angles for the center rear of the trailer. These tolerances
are used to define the CGMurϕ goal property.

To embed the obstacles in the model, we approximate them through their bounding
rectangles (or rectangle compositions). Then we consider the representative points of
the truck-trailer position (defined above, see Sect. 5.1) and, each time a new truck po-
sition is computed, we use a function to check if any of these points has hit the parking
lot obstacles or borders. Therefore, our controller synthesis algorithm considers only
feasible maneuvers to the goal state.

Moreover, in order to obtain a more robust controller we also considered the maneu-
vering errors due to the truck-trailer complex dynamic properties (e.g., friction, brakes
response time, etc.) that cannot be easily embedded in the mathematic model. We used
such errors to draw a security border around each obstacle and used these augmented
obstacles in the collision check described above.

To estimate maximum maneuvering error we applied a Monte Carlo’s method de-
scribed as follows. We consider a large set of valid parking lot positions S = {sk|1 ≤
k ≤ 500000}. Given a position sk ∈ S, (1) we apply a random maneuver mk ob-
taining the new position s̄k. Then (2) we randomly perturb sk generating the position
sp

k and apply the same maneuver mk on sp
k obtaining the position s̄p

k. Finally, (3) we
compute the distance of the selected truck points Pi between the positions sp

k and s̄p
k.

This process is repeated 200 times for each position in S, thus analyzing 100 millions
of perturbations. The security border size is the highest distance measured for a point
in the step (3). We found out that this distance is 0.98 m.

5.3 Experimental Results

We tested our methodology using several obstacles topologies. In this section we present
the results relative to the map shown in Fig. 5 where the obstacles and the security bor-
ders are highlighted.

Table 1 shows the results of the first phase of our algorithm (see Sect. 4.2). We
repeated the controller generation using two different approximations for the real state
variables x and y, rounding them to 0.5 and 0.2 meters.

Automated Generation of Optimal Controllers 117

Fig. 5 Optimal trajectory generated by CGMurϕ from initial position x = 12, y = 16, θs = 0,
θc = 0.

Indeed, an higher precision extends the reachable state space and, consequently, the
number of transitions in the controller. The results in Table 1 show that we are able to
deal with system having millions of states.

In the second phase, we refined the controller by applying 36 disturbs to each state
in the controller table and finding the appropriate rules to reconnect each new state to
the optimal controller paths, as described in Sect. 4.3. As shown in Table 2, in this phase
a significant number of transitions is added, due to the complexity of the truck-trailer
dynamics.

Table 1 Experimental results for optimal raw controller synthesis

Round Reachable Rules Trans. in Time
states fired controller Sec

0.5 m 2233997 64785913 382262 8160
0.2 m 12227989 354611681 1749586 32847

118 G. Della Penna et al.

Table 2 Experimental results for controller strengthening

Round MAX Trans. Trans. in Size of
VARS added controller controller

0.5 m 36 257850 640112 14 Mb
0.2 m 36 646364 2395950 50 Mb

Controller Robustness. In order to check the controller robustness, we considered all
the trajectories starting from each state in the controller. For each trajectory state s, we
applied a random disturbance on the state variables, generating a possibly new state sp,
and then we applied to sp the rule associated to controller state s′ that is nearest to sp.
A trajectory is robust if, applying the disturbances above, it eventually reaches the goal
state.

Table 3 Check of controller robustness

Round Disturb range Disturb range Robust
for x,y for θs,θc trajectories

0.5 m ±0.25 m ±1◦ 40%
±0.125 m ±0.5◦ 45%
±0.0625 m ±0.25◦ 57%

0.2 m ±0.1 m ±1◦ 74%
±0.05 m ±0.5◦ 88%

We checked all trajectories by applying different disturb ranges. As shown in Ta-
ble 3, the fraction of robust trajectories increases with the controller precision (i.e., the
real values approximation). Note that the percentages of robust trajectories in the second
round are completely satisfying considering:

– the optimality of the trajectories;
– the extreme complexity of this parking problem;
– the unavailability of correction maneuvers.

6 Conclusions

The controller tables generated through our methodology contain millions of state-rule
pairs. Thus, if we are working with small embedded systems, the table size could be a
potential issue. This problem can be mitigated by applying various compression tech-
niques on the table.

A completely different solution that we are also experimenting is the generation
of hybrid controllers, that are optimal controllers working in parallel with e.g. a fuzzy
controller. In this case, the optimal controller ensures the execution of the optimal plans
(i.e., it is the optimal raw controller generated in Sect. 4.2), whereas the fuzzy controller
is able to bring the system back to the optimal plans from any state outside the optimal

Automated Generation of Optimal Controllers 119

raw controller. Thus, the fuzzy controller substitutes the extended knowledge generated
by the algorithm in Sect. 4.3 with a set of inference rules. These rules may be in turn
generated by an iterative learning process driven by an algorithm similar to the one of
Sect. 4.3.

References

1. Kautz, H., Thomas, W., Vardi, M.Y.: 05241 executive summary – synthesis and planning.
In Kautz, H., Thomas, W., Vardi, M.Y., eds.: Synthesis and Planning. Number 05241 in
Dagstuhl Seminar Proceedings (2006)

2. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid
systems Special Issue on Hybrid Systems, 35 (1999)

3. Åstrom, K.J., Hägglund, T.: PID controllers - Theory, Design, and Tuning. International
Society for Measurement and Con; 2nd edn (2005)

4. Li, H., Gupta, M.: Fuzzy Logic and Intelligent Systems. Kluwer Academic Publishers (1995)
5. Jin, J.: Advanced Fuzzy Systems Design and Applications. Physica-Verlag (2003)
6. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific (2005)
7. Sniedovich, M.: Dynamic Programming. Marcel Dekker (1992)
8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-

ing: 1020 states and beyond. Information and Computation 98 (1992) 142–170
9. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2003)

10. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hardware design
aid. In: Proceedings of the 1991 IEEE International Conference on Computer Design on
VLSI in Computer & Processors, IEEE Computer Society (1992) 522–525

11. Hu, A.J., York, G., Dill, D.L.: New techniques for efficient verification with implicitly con-
joined bdds. In: DAC ’94: Proceedings of the 31st Annual Conference on Design Automa-
tion, New York, USA, ACM Press (1994) 276–282

12. http://www.dsi.uniroma1.it/∼tronci/cached.murphi.html (2006)
13. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Venturini Zilli, M.: Exploiting transition

locality in automatic verification of finite state concurrent systems. STTT 6 (2004) 320–341
14. Murphi Web Page: http://sprout.stanford.edu/dill/murphi.html (2004)
15. Stern, U., Dill, D.: Using magnetic disk instead of main memory in the murϕ verifier. In Hu,

A.J., Vardi, M.Y., eds.: Computer Aided Verification, 10th International Conference, CAV
’98, Vancouver, BC, Canada, June 28-July 2, Proceedings. Volume 1427 of Lecture Notes in
Computer Science, Springer (1998) 172–183

16. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In: CHARME
’95: Proceedings of the IFIP WG 10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, London, UK, Springer-Verlag (1995) 206–224

17. Nguyen, D., Widrow, B.: The truck backer-upper: an example of self learning in neural
networks. In: W.T. Miller, R.S. Sutton, and P.J. Werbos, eds.: Neural Networks For Control,
Mit Press Series In Neural Network Modeling and Connectionism. MIT Press, Cambridge,
MA (1990) 287–299

